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Abstract
In this report we document the implementation of high-order Higdon nonreflecting

boundary conditions. We suggest a way to choose the parameters and demonstrate
numerically the efficiency of our choice. The model we used is the linearized 2-D Euler
equations with zero advection. These equations are solved by the finite difference
method. We close with a list of topics for research.

1. Statement of the Problem

Consider the linearized Euler equations in an infinite domain. For simplicity we assume
that the domain has a flat bottom and that there is no advection and no Coriolis effect,
although these assumptions may be removed in future studies. A Cartesian coordinate
system (x, y) is introduced, as shown in the figure.
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Figure 1: An infinite domain

The linearized Euler equations are (see, e.g., [32] or [33]):

∂tρ + ρ0(∂xu + ∂yv) = 0 , (1)

∂tu +
1
ρ0

∂xp = 0 , (2)

∂tv +
1
ρ0

∂yp = 0 , (3)

∂tp + γp0(∂xu + ∂yv) = 0 . (4)

Here t is time, u(x, y, t) and v(x, y, t) are the unknown velocities in the x and y direc-
tions, ρ(x, y, t) is the density, p(x, y, t) is the pressure and γ is the gas constant. The
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linearization was done about mean zero velocities, mean density ρ0 and mean pressure
p0. We use the following shorthand for partial derivatives

∂i
a =

∂i

∂ai

The nonlinear Euler equations are

∂tρ + ∂x(ρu) + ∂y(ρv) = 0 , (5)

∂tu + u∂xu + v∂yu +
1
ρ
∂xp = fv , (6)

∂tv + u∂xv + v∂yv +
1
ρ
∂yp = −fu , (7)

∂tp + u∂xp + v∂yp + γp(∂xu + ∂yv) = 0 . (8)

It can be shown that a single boundary condition must be imposed along the entire
boundary to obtain a well-posed problem. At �x → ∞ the solution is known to be
bounded and not to include any incoming waves. To complete the statement of the
problem, initial values for u, v, p and ρ are given at time t = 0 in the entire domain.

We now truncate the infinite domain by introducing an artificial east boundary ΓE ,
located at x = xE , and similarly at the the other three sides (see Figure 1). To obtain
a well-posed problem in the finite domain Ω we need a single boundary condition on
each of the artificial boundaries ΓE , ΓW , ΓN , and ΓS . This should be a Non-Reflecting
Boundary Condition (NRBC). We shall apply a high-order NRBC for the variables. A
discussion on this NRBC follows.

2. Higdon’s NRBCs

On the artificial boundary ΓE we use one of the Higdon NRBCs [1]. Similarly for
the other three sides. These NRBCs were presented and analyzed in a sequence of
papers [2]–[6] for non-dispersive acoustic and elastic waves, and were extended in [1]
for dispersive waves. Their main advantages are as follows:

1. The Higdon NRBCs are very general, namely they apply to a variety of wave
problems, in one, two, and three dimensions and in various configurations.

2. They form a sequence of NRBCs of increasing order. This enables one, in principle
(leaving implementational issues aside for the moment), to obtain solutions with
unlimited accuracy.

3. The Higdon NRBCs can be used, without any difficulty, for dispersive wave prob-
lems and for problems with layers. Most other available NRBCs are either de-
signed for non-dispersive media (as in acoustics and electromagnetics) or are of
low order (as in meteorology and oceanography).

4. For certain choices of the parameters, the Higdon NRBCs are equivalent to NR-
BCs that are derived from rational approximation of the dispersion relation (the
Engquist-Majda conditions being the most well-known example). This has been
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proved by Higdon in [1] and in earlier papers. Thus, the Higdon NRBCs can be
viewed as generalization of rational-approximation NRBCs.

The scheme developed here is different than the original Higdon scheme [1] in the
following ways:

1. The discrete Higdon conditions were developed in the literature up to third order
only, because of their algebraic complexity which increases rapidly with the order.
Here we show how to easily implement these conditions to an arbitrarily high
order. The scheme is coded once and for all for any order; the order of the
scheme is simply an input parameter.

2. The original Higdon conditions were applied to the Klein-Gordon linear wave
equation and to the elastic equations. Here we show how to apply them to the
linearized Euler equations (1)–(4).

3. The Higdon NRBCs involve some parameters which must be chosen. Higdon [1]
discusses some general guidelines for their manual a-priori choice by the user. We
shall show how a simple choice for these parameters can dramatically simplify
the calculations and enable implementation of NRBCs of much higher order with
less computational overhead.

The Higdon NRBC of order J is

HJ :

⎡
⎣ J∏

j=1

(∂t + Cj∂x)

⎤
⎦ η = 0 on ΓE . (9)

Here, the Cj are parameters which have to be chosen and which signify phase speeds
in the x-direction. The boundary condition (9) is exact for all waves that propagate
with an x-direction phase speed equal to any of C1, . . . , CJ . This is easy to see from
the reflection coefficient (see below). For the other sides we replace ∂x by the normal
derivative to the boundary.

We make a few observations:

• In their sequence of papers [22]–[31], Givoli, Neta, and van Joolen showed that
one should always take Cj ≥ C0 because, in general, the solution consists of an
infinite number of waves with different phase speeds. For this problem, however,
there is only one wave speed C0 impinging on the boundary at all possible angles;
hence, one should instead take Cj ≤ C0 (i.e., Cj = C0 cos(φj), where φj ∈ 0 . . . π

2 ).

• The first-order condition H1 is a Sommerfeld-like boundary condition. If we set
C1 = C0 we get the classical Sommerfeld-like NRBC. A lot of work in the mete-
orological literature is based on using H1 with a specially chosen C1. Pearson [7]
used a special but constant value of C1, while in the scheme devised by Orlanski [8]
and in later improved schemes [9]–[12] the C1 changes dynamically and locally in
each time-step based on the solution from the previous time-step. Some of the
limited-area weather prediction codes used today are based on such schemes, e.g.,
COAMPS [13]. See also the recent papers [14]–[16] where several such schemes
are compared. In a series of papers [22]–[31], Givoli, Neta and van Joolen have
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demonstrated the use of high order Higdon NRBC to solve the shallow water
equations with advection and stratification.

• The condition HJ involves up to Jth-order normal and temporal derivatives. In
fact, it has the form

J∑
j=0

Aj ∂j
x∂J−j

t η = 0 , (10)

which is obtained by expanding (9).

• It is easy to show (see Higdon [1] for a similar setting) that when a wave of the
form η = Φ(y)eikx−iωt impinges on the boundary ΓE where the NRBC HJ is
imposed, the resulting reflection coefficient is

R =
J∏

j=1

∣∣∣∣∣Cj − Cx

Cj + Cx

∣∣∣∣∣ . (11)

Immediately we see that if Cj = Cx for one of the j’s then R = 0, namely there
is no reflection and the NRBC is exact. Moreover, we see that the reflection
coefficient is a product of J factors, each of which is smaller than 1. This implies
that the reflection coefficient becomes smaller as the order J increases regardless
of the choice made for the parameters Cj. Of course, a good choice for the Cj

would lead to better accuracy with a lower order J , but even if we miss the correct
Cj ’s considerably (say, if we make the simplest choice Cj = C0 for j = 1, . . . , J),
we are still guaranteed to reduce the spurious reflection as we increase the order
J . This is an important property of the Higdon’s NRBCs and is the reason for
their robustness.

• In [4], Higdon points to the possibility of a long-time instability that might occur
when one uses a NRBC with high-order derivatives. If the interior governing equa-
tions and the NRBC both admit solutions at zero wave number and frequency,
and if the data in the problem include such “zero modes,” then a slowly-growing
smooth instability is possible. Whether this shows up in practice depends on
the order of the derivatives in the NRBC and the number of spatial dimensions.
However, these difficulties do not arise in the presence of dispersion, or if the data
are confined to nontrivial modes.

3. Discretization of Higdon’s NRBCs

The Higdon condition HJ is a product of J operators of the form ∂t + Cj∂x. Consider
the following Finite Difference (FD) approximations (see e.g. [17]):

∂t � I − S−
t

∆t
, ∂x � I − S−

x

∆x
. (12)

In (12), ∆t and ∆x are, respectively, the time-step size and grid spacing in the x
direction, I is the identity operator, and S−

t and S−
x are shift operators defined by

S−
t ηn

pq = ηn−1
pq , S−

x ηn
pq = ηn

p−1,q . (13)
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Here and elsewhere, ηn
pq is the FD approximation of η(x, y, t) at grid point (xp, yq) and

at time tn. We use (12) in (9) to obtain:
⎡
⎣ J∏

j=1

(
I − S−

t

∆t
+ Cj

I − S−
x

∆x

)⎤
⎦ ηn

Eq = 0 . (14)

Here, the index E corresponds to a grid point on the boundary ΓE. Higdon has solved
this difference equation (and also a slightly more involved equation that is based on
time- and space-averaging approximations for ∂x and ∂t) for J ≤ 3 to obtain an explicit
formula for ηn

Eq. This formula is used to find the current values on the boundary ΓE

after the solution in the interior points and on the other boundaries has been updated.
The formula for J = 2 is found in [6], and the one for J = 3 appears in the appendix
of [5]. The algebraic complexity of these formulas increases rapidly with the order J .
It is thus not surprising that we have not found in the literature any report on the
implementation of the Higdon NRBCs beyond J = 3.

Now we show how to implement the Higdon NRBCs to any order using a simple
algorithm. To this end, we first multiply (14) by ∆t and rearrange to obtain

Z ≡
⎡
⎣ J∏

j=1

(
ajI + djS

−
t + ejS

−
x

)⎤⎦ ηn
Eq = 0 , (15)

where

aj = 1 +
Cj∆t

∆x
, (16)

dj = −1 , (17)

ej = −Cj∆t

∆x
. (18)

The coefficient dj actually does not depend on j, but we keep this notation to allow
easy extensions to the scheme (see, e.g., [22]). Now, this formula for Z requires the
summation of 3J terms. If we make the simplification

Cj ≡ C0 ∀ j ∈ 1 . . . J, (19)

then our expansion for Z becomes

Z ≡
(
aI + dS−

t + eS−
x

)J
ηn

Eq

=

⎛
⎝ J∑

β=0

J−β∑
γ=0

J !
α!β!γ!

aαdβeγ

⎞
⎠ ηn

Eq = 0, (20)

where α = J − β − γ, and this summation consists of only (J+1)(J+2)
2 terms, reducing

the computational time considerably.
Note that we need to store ηn̂

îq
values for î = E,E − 1, . . . , E − J and n̂ = n, n −

1, . . . , n− J . In other words, we have to store the history of the values of η for a layer
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of thickness J + 1 points near the boundary ΓE and for J + 1 time levels (including
the current one). If there are Ny grid points in the y direction, then the amount of
storage needed in a simple storage scheme is (J + 1)2Ny. However, one can save in
storage by exploiting the fact that not all values ηn̂

îq
are needed, but only those for

which (E − î) + (n− n̂) ≤ J . This is clear from (10) and also from (15). For example,
the solution at time tn−J should be stored only for points on the boundary ΓE itself.

4. The Interior Scheme

We consider explicit FD interior discretization schemes for the linearized Euler equa-
tions (1)–(4) to be used in conjunction with the HJ condition. The interaction between
the HJ condition and the interior scheme is a source of concern, since simple choices
for an explicit interior scheme turn out to give rise to long-time instabilities. We have
tried the usual second-order centered difference scheme

η′(x) ≈ η(x + h) − η(x − h)
2h

using both Euler’s method in time and the second-order centered difference in time.
They are stable for a sufficiently small time step when used with the boundary condition
H1 (which is a Sommerfeld-like condition as previously mentioned), but they become
unstable for J ≥ 2. The instability appears earlier in time when J becomes larger.

Higdon [1] has proved, in the context of the scalar Klein-Gordon equation,

∂2
t η − C2

0∇2η + f2η = 0 , (21)

that the discrete NRBCs (14) are stable if the interior scheme is the standard second-
order centered difference scheme

ηn+1
pq = 2ηn

pq − ηn−1
pq +

(
C0∆t

∆x

)2 (
ηn

p+1,q − 2ηn
p,q + ηn

p−1,q

)

+
(

C0∆t

∆y

)2 (
ηn

p,q+1 − 2ηn
p,q + ηn

p,q−1

)
− (f∆t)2ηn

p,q . (22)

Now we shall show how the linearized Euler equations (1)–(4) can be discretized in
such a way as to mimic (22) and to lead to a stable scheme.

Let ∆t denote a forward difference approximation of ∂
∂t , let ∇t denote a backward

difference approximation to the same, and use similar notation for forward and back-
ward difference approximations in x and y. We can then write this wave equation
discretization as

∆t∇tu
n
i,j = c2

0

(
∆x∇xun

i,j + ∆y∇yu
n
i,j

)
(23)

or
∇t∆tu

n
i,j = c2

0

(
∇x∆xun

i,j + ∇y∆yu
n
i,j

)
(24)

where we use f = 0 to reduce the Klein-Gordon equation to the standard wave equation.
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Try the following discretization for (1)–(4):

∇tρ = −ρ0 (∇xu + ∇yv)

∆tu = −∆xp

ρ0

∆tv = −∆yp

ρ0
(25)

∇tp = −γp0 (∇xu + ∇yv)

Apply ∇x to the second equation of (25), ∇y to the third, ∆t to the fourth, and then
make the appropriate substitution. This gives us

∆t∇tp =
γp0

ρ0
(∆x∇xp + ∆y∇yp) , (26)

exactly as desired. Alternatively, we can switch the direction of every spatial difference
and get the following discretization:

∇tρ = −ρ0 (∆xu + ∆yv)

∆tu = −∇xp

ρ0

∆tv = −∇yp

ρ0
(27)

∇tp = −γp0 (∆xu + ∆yv) ,

which is then equivalent to

∆t∇tp =
γp0

ρ0
(∇x∆xp + ∇y∆yp) (28)

Which discretization to use is purely an esthetic decision. We have tried both, and both
bring stable, albeit asymmetric, results. However, care must be taken in programming
this scheme to ensure that the semi-implicit computations of p and ρ use the correct
values for u and v. In the numerical example below, we use (25).

5. A Numerical example

Let us consider a simple numerical example. Using the discretization scheme in (25), we
look at a square domain 100 km on each side, subdividing it into a 50×50 computational
domain with the Higdon-like NRBCs on all four sides. Using a mean atmoshperic
density of 1.2 kg

m3 and pressure of 1.01 × 105 N
m2 [34], and zero advection, our initial

condition is a biquadratic pressure and density bulge in the center of the domain:

p0
i,j =

{
p0

(
1 + (i−21)(30−i)(j−21)(30−j)

4000

)
: 21 ≤ i, j ≤ 30

p0 : otherwise

ρ0
i,j =

{
ρ0

(
1 + (i−21)(30−i)(j−21)(30−j)

4000

)
: 21 ≤ i, j ≤ 30

ρ0 : otherwise
(29)
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For comparison, our reference solution domain is 300 km on each side, with the domain
of interest in the center. We define the error norm for each state variable η as

Eη =

√∑Nx
i=1

∑Ny

j=1 (ηJ(i, j) − η0(i, j))
2

NxNy
, (30)

where Nx, Ny are the number of grid points in the x and y directions, respectively, ηJ

is a solution state variable using the J-order NRBC, and η0 is the reference solution.
Our time step is computed by

dt =
√

dx2 + dy2

4C0
(31)

which is half the CFL limit, thus guaranteeing stability. We run the simulation up
to t = 216, long enough for the primary wave to exit the computational domain with
the wave trough just passing through the corners. The following figures show the four
state variables at the end of the run for J = 6. In each figure, the top left shows the
computed solution using the NRBCs, the top right shows the reference solution, the
bottom left shows the reference solution domain truncated to the size of the computed
solution’s domain, and the bottom right plots the delta between the two solutions and
computes the error norm as defined above.
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Figure 2: The solution for the density ρ using J = 6



High-Order Higdon NRBCs 9

X−direction Velocity
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Figure 3: The solution for u using J = 6
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J ρ × 10−5 u × 10−3 v × 10−3 p

1 1.7677 3.7601 3.7601 2.0829
2 0.43811 0.94068 0.94068 0.51624
3 0.18223 0.38785 0.38785 0.21473
4 0.10341 0.22628 0.22628 0.12185
5 0.083147 0.16743 0.16743 0.097975
6 0.068582 0.17855 0.17855 0.080812

Table 1: Error Norms for J ∈ 1, 6 with Discretization Scheme (25)
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Table 1 shows the improvements as J goes from 1 to 6 (graphs omitted) This
example demonstrates, albeit in a simplified setting, that the linearized Euler equations
are compatible with high-order Higdon-like NRBCs.
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Appendix: Future Research

Here is a list of subjects for further investigation (in random order):
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1. Thorough investigation of the numerical properties of the scheme: measuring the
error as a function of the location of the artificial boundary; computing time and
operation count as a function of the various parameters (such as J and the number
of grid points on the boundary); stability with various interior schemes; etc.

2. Implementing the scheme with auxiliary variables, using FDs.

3. Implementing the scheme with auxiliary variables using FEs.

4. Experimenting with the use of the Higdon conditions with the Nonlinear Euler
equations in the computational domain. (Need to find a stable interior scheme-
NRBC combination.)

5. Applying the scheme in the 3D case.

6. Extending the scheme to the case of the linearized Euler equations with a nonzero
mean flow (advection).

References

[1] R.L. Higdon, “Radiation Boundary Conditions for Dispersive Waves,” SIAM J.
Numer. Anal., 31, 64–100, 1994.

[2] R.L. Higdon, “Absorbing Boundary Conditions for Difference Approximations to
the Multi-Dimensional Wave Equation, Math. Comput., 47, 437–459, 1986.

[3] R.L. Higdon, “Numerical Absorbing Boundary Conditions for the Wave Equa-
tion,” Math. Comput., 49, 65–90, 1987.

[4] R.L. Higdon, “Radiation Boundary Conditions for Elastic Wave Propagation,”
SIAM J. Numer. Anal., 27, 831–870, 1990.

[5] R.L. Higdon, “Absorbing Boundary Conditions for Elastic Waves,” Geophysics,
56, 231–241, 1991.

[6] R.L. Higdon, “Absorbing Boundary Conditions for Acoustic and Elastic Waves in
Stratified Media,” J. Comput. Phys., 101, 386–418, 1992.

[7] R.A. Pearson, “Consistent Boundary Conditions for the Numerical Models of Sys-
tems That Admit Dispersive Waves,” J. Atmos. Sci., 31, 1418–1489, 1974.

[8] I. Orlanski, “A Simple Boundary Condition for Unbounded Hyperbolic Flows,” J.
Comp. Phys., 21, 251–269, 1976.

[9] W.H. Raymond and H.L. Kuo, “A Radiation Boundary Condition for Multi-
Dimensional Flows,” Q.J.R. Meteorol. Soc., 110, 535–551, 1984.

[10] M.J. Miller and A.J. Thorpe, “Radiation Conditions for the Lateral Boundaries
of Limited-Area Numerical Models,” Q.J.R. Meteorol. Soc., 107, 615–628, 1981.

[11] J.B. Klemp and D.K. Lilly, “Numerical Simulation of Hydrostatic Mountain
Waves,” J. Atmos. Sci., 35, 78–107, 1978.

[12] M. Wurtele, J. Paegle and A. Sielecki, “The Use of Open Boundary Conditions
with the Storm-Surge Equations,” Mon. Weather Rev., 99, 537–544, 1971.



High-Order Higdon NRBCs 12

[13] R.M. Hodur, “The Naval Research Laboratory’s Coupled Ocean/Atmosphere
Mesoscale Prediction System (COAMPS),” Mon. Wea. Rev., 125, 1414-1430,
1997.

[14] X. Ren, K.H. Wang and K.R. Jin, “Open Boundary Conditions for Obliquely
Propagating Nonlinear Shallow-Water Waves in a Wave Channel,” Comput. &
Fluids, 26, 269–278, 1997.

[15] T.G. Jensen, “Open Boundary Conditions in Stratified Ocean Models,” J. Marine
Systems, 16, 297–322, 1998.

[16] F.S.B.F. Oliveira, “Improvement on Open Boundaries on a Time Dependent Nu-
merical Model of Wave Propagation in the Nearshore Region,” Ocean Eng., 28,
95–115, 2000.

[17] J.C. Tannehill, D.A. Anderson and R.H. Pletcher, Computational Fluid Mechanics
and Heat Transfer, 2nd ed., Taylor & Francis, Washington DC, 1997.

[18] M.J. Miller and R.P. Pearce, “A Three Dimensional Primitive Equation Model of
Cumulonimbus Convection, Quart. J. Roy. Met. Soc., 100, 133–154, 1974.

[19] J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations,
Wadsworth & Brooks, Pacific Grove, CA, 1989.

[20] C.B. Vreugdenhil, Numerical Methods for Shallow Water Flow, Kluwer, Dor-
drecht, 1994.

[21] D.R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dy-
namics, Springer, New York, 1999.

[22] D. Givoli, B. Neta, High-Order Non-Reflecting Boundary Conditions for Disper-
sive Waves, Wave Motion, 37 (2003), 257–271.

[23] D. Givoli, B. Neta, High-Order Non-Reflecting Boundary Scheme for Time-
Dependent Waves, J. Computational Physics, 186, (2003), 24–46.

[24] D. Givoli, B. Neta, and Igor Patlashenko, Finite Element Solution of Exterior
Time-Dependent Wave Problems with High-Order Boundary Treatment, Interna-
tional Journal Numerical Methods in Engineering, 58, (2003), 1955–1983.

[25] D. Givoli and B. Neta, High-Order Non-Reflecting Boundary Conditions for the
Dispersive Shallow Water Equations, J. Computational Applied Mathematics, 158,
(2003), 49–60.

[26] V. van Joolen, D. Givoli, and B. Neta, High-Order Non-Reflecting Boundary Con-
ditions for Dispersive Waves in Cartesian, Cylindrical and Spherical Coordinate
Systems, International J. Computational Fluid Dynamics, 17(4), (2003), 263–274.

[27] V. van Joolen, B. Neta, and D. Givoli, A Stratified Dispersive Wave Model with
High-Order Non-Reflecting Boundary Conditions, Computers and Mathematics
with Applications, 48, (2004), 1167–1180.

[28] V. van Joolen, B. Neta, and D. Givoli, High-Order Higdon-Like Boundary Con-
ditions for Exterior Transient Wave Problems, International Journal Numerical
Methods in Engineering, 63, (2005), 1041–1068.



High-Order Higdon NRBCs 13

[29] V. van Joolen, B. Neta, and D. Givoli, High-Order Boundary Conditions for Lin-
earized Shallow Water Equations with Stratification, Dispersion and Advection,
International Journal Numerical Methods in Fluids, 46(4), (2004), 361–381.

[30] D. Givoli and B. Neta, High-Order Non-Reflecting Boundary Conditions for Dis-
persive Wave Problems, Proceeding of the International Conference on Computa-
tional and Mathematical Methods in Science and Eingineering, Alicante, Spain,
20-25 September 2002.

[31] V. van Joolen, B. Neta, and D. Givoli, High-Order Non-Reflecting Bound-
ary Conditions for Dispersive Wave Problems in Stratified Media, Proceeding
of the Sixth International Conference on Computer Modelling and Experimen-
tal Measurements of Seas and Costal Regions, Cadiz, Spain, 23-25 June 2003,
(C.A.Brebbia, D.Almorza andF.López − Aguayo, eds), pp. 73-82.
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